Random variable

(redirected from Random mapping)
Also found in: Dictionary, Thesaurus, Medical, Encyclopedia.

Random variable

A function that assigns a real number to each and every possible outcome of a random experiment.

Random Variable

In statistics, a variable expressing all possible outcomes of a set of circumstances. It is important in probability density function and probability distribution.
References in periodicals archive ?
According to the aforementioned content, we know that the random mapping results in the perturbation of output and a good classification performance requires much more hidden nodes.
([micro]s) UTL (B/ns) SA Cost RAND-50 EDF-SA 204.26 0.46 0.03 0.16 PDS 220.03 0.55 0.03 0.19 SPARSE-96 EDF-SA 616.51 0.44 0.02 0.15 PDS 637.89 0.49 0.02 0.17 RAND-100 EDF-SA 418.67 0.47 0.03 0.17 PDS 432.17 0.60 0.03 0.21 RAND-300 EDF-SA 1299.45 0.49 0.03 0.17 PDS 1296.95 0.56 0.03 0.19 FPPP-334 EDF-SA 2238.36 0.42 0.02 0.15 PDS 2337.36 0.47 0.02 0.16 RAND-500 EDF-SA 1432.79 0.48 0.02 0.16 PDS 2125.33 0.66 0.03 0.23 RAND-1000 EDF-SA 4163.73 0.52 0.03 0.18 PDS 4324.58 0.58 0.03 0.20 Table 3: Comparison of HWD and next available and random mapping algorithms (simulation: TS-9).
A measurable function f : [OMEGA] [right arrow C is called a random coincidence for two random mappings S, T : [OMEGA] x C [right arrow] C if T([omega], f([omega])) = S([omega], f([omega])) for all to [omega] [member of] [OMEGA].