Autoregressive Process

(redirected from Autoregressive Processes)

Autoregressive Process

Any process or model that uses past data to predict future data. Technical analysis, for example, is an autoregressive process. See also: Forecasting.
Mentioned in ?
References in periodicals archive ?
Datta, "First-order random coefficient integer-valued autoregressive processes," Journal of Statistical Planning and Inference, vol.
Order Determination for Multivariate Autoregressive Processes using Resampling Methods.
By taking into account time-lagged soil water content, time-lagged soil temperature, autoregressive processes and seasonality, the model provides more-detailed information on the nature of the relationship between [N.
BIC 0,051 0,051 0,051 MAIC 0,050 0,051 0,050 t-sig 0,050 0,051 0,051 Moving-average processes [theta] = -0,8 BIC 0,930 0,931 0,930 MAIC 0,334 0,334 0,329 t-sig 0,074 0,074 0,074 [theta] = -0,4 BIC 0,391 0,385 0,385 MAIC 0,145 0,146 0,141 t-sig 0,025 0,025 0,025 [theta] = 0,4 BIC 0,226 0,224 0,227 MAIC 0,109 0,108 0,098 t-sig 0,051 0,053 0,051 [theta] = 0,8 BIC 0,481 0,482 0,478 MAIC 0,185 0,191 0,176 t-sig 0,074 0,076 0,074 Autoregressive processes p = -0,8 BIC 0,010 0,010 0,010 MAIC 0,003 0,002 0,003 t-sig 0,016 0,016 0,015 p = -0,4 BIC 0,129 0,120 0,128 MAIC 0,064 0,063 0,063 t-sig 0,030 0,030 0,030 p = 0,4 BIC 0,146 0,146 0,146 MAIC 0,122 0,131 0,113 t-sig 0,057 0,058 0,057 p = 0,8 BIC 0,290 0,298 0,278 MAIC 0,342 0,360 0,321 t-sig 0,136 0,139 0,134 Size Power [P.
Among the topics are gradient-based algorithms with applications to signal-recovery problems, graphical models of autoregressive processes, convex analysis for non-negative blind source separation with applications in imaging, robust broadband adaptive beamforming using convex optimization, and cooperative distributed multi- agent optimization.
Here, a is a diagonal matrix of elements in [0, 1) driving the stationary autoregressive processes.
Determining the Order of Differencing in Autoregressive Processes," Journal of Business and Economic Statistics, 5, 1987, pp.
To examine the nature of various nonlinear estimates, we generated a large number of series from second-order autoregressive processes.
9B and 9C are not a pair of first-order autoregressive processes due to the dependence of [[Phi].
A second approach is to build dynamics into the unobserved factors themselves by modeling them as autoregressive processes.
Johansen's tests for cointegration (1988, 1991, Johansen and Juselius (1990)) are a logical multivariate extension of Dickey-Fuller unit root tests for autoregressive processes.

Full browser ?